920. Physical Properties and Chemical Constitution. Part XXX.* The Dipole Moments of Some Halogeno- and Cyano-pyridines.

By Charles W. N. Cumper and Arthur I. Vogel.

The electric dipole moments of 18 chloro-, bromo-, and cyano-pyridines, together with those of chloro-, bromo-, and cyano-benzene, have been calculated from measurements of the dielectric constants, specific volumes, and refractive indices of their solutions in benzene at $25 \cdot 00^{\circ}$. The dipole moments are considered in terms of the different " apparent bond moments" of the substituents in the $\alpha-, \beta$-, and γ-positions in the pyridine ring. The main causes for the differences between the pyridine and benzene ring systems and discussed.
The electric dipole moments of a very large number of mono- and poly-substituted benzenes have been measured but few systematic investigations of heterocyclic systems have been reported. Analysis of their dipole moments is frequently complicated by two factors. The parent heterocyclic molecule often has a large moment itself and the carbon atoms in the ring are no longer entirely equivalent. A detailed investigation of the dipole moments of heterocyclic compounds, however, could provide information about the electron distribution within the molecules and the electron availability at different carbon atoms in the ring.

In Part XXV ${ }^{1}$ the dipole moments of mono-alkylpyridines and -lutidines were reported. This investigation has now been extended to the halogeno- and cyano-pyridines.

Experimental

The apparatus and techniques used were described in Part XXV. ${ }^{1}$ Measurements were made of benzene solutions at $25 \cdot 00^{\circ} \pm 0.01^{\circ}$.

2 -Chloropyridine and all the bromopyridines, except 4 -bromopyridine, were very kindly given to us by Professor J. P. Wibaut, University of Amsterdam. The remaining compounds were high-grade commercial products. These were extensively purified before use, and all the compounds were given a final crystallisation or fractional distillation immediately before their solutions in benzene were prepared and the physical measurements taken. Their m. p.s or b. p.s agreed with published values and the consistency amongst the dipole moments found for the whole series of compounds is considered evidence of their purity.

The b. p.s of the 2 -, 3 -, and 4 -chloropyridines were, respectively, $170^{\circ} / 770,150^{\circ} / 769$, and $147^{\circ} / 757 \mathrm{~mm}$.; and of $2-, 3$-, and 4 -bromopyridine $192^{\circ} / 756,173^{\circ} / 760$, and $30^{\circ} / 0 \cdot 4 \mathrm{~mm}$. (m. p. 6°). The m. p.s of the crystalline pyridine compounds were: 2 -, 3 -, and 4 -cyanopyridine, $26^{\circ}, 50^{\circ}$, and 82°; 2,6- and 3,5 -dichloropyridine, 87° and 65°; 2,6-, 3,5 -, 3,4-, and 2,5 -dibromopyridine, $119^{\circ}, 111 \cdot 5^{\circ}, 73^{\circ}$, and 93°; 2,4,6-, 2,3,6-, and $3,4,5$-tribromopyridine, $108^{\circ}, 82^{\circ}, 109^{\circ}$, respectively. Chlorobenzene had b. p. $132^{\circ} / 760 \mathrm{~mm}$., bromobenzene b. p. $156^{\circ} / 764 \mathrm{~mm}$., and benzonitrile b. p. $191^{\circ} / 766 \mathrm{~mm}$.

Results.-The dielectric constants $\left(\varepsilon_{12}\right)$, specific volumes (v_{12}), and refractive indices to sodium light (n_{12}) of benzene solutions with weight fractions $\left(w_{2}\right)$ are recorded in Table 1. Over the concentration range studied, ε_{12} was a linear function of w_{2}, and the parameters of this relation, determined by a method of least squares, are also in Table 1. Likewise v_{12} and the specific refraction $\left(r_{12}\right)$ of the solutions were linear function of w_{2}.

The total polarisation of the solutes at infinite dilution (${ }_{\infty} P_{2}$) was evaluated. The distortion polarisation, to be subtracted from ${ }_{\infty} P_{2}$ to give the orientation polarisation (${ }_{0} P$), was assumed equal to the molar refraction to sodium light (R_{D}) and obtained from the specific refraction of the solutions. ${ }^{1}$ The values of ${ }_{\infty} P_{2}, R_{\mathrm{D}}$, ${ }_{0} P$, and the electric dipole moment (μ) of the compounds are given in Table 2. A large atom polarisation could result in a significant error in the dipole moment of $3,4,5$-tribromopyridine.

[^0]
Discussion

There are two main centres of polarity in these molecules. Pyridine has a dipole moment of $2 \cdot 21 \mathrm{D},{ }^{1}$ associated largely with the nitrogen atom itself, particularly its lone-pair electrons in a hybridised orbital. One wave-mechanical calculation ${ }^{2}$ indicates that this hybridisation causes a dipole moment of 1.78 D , the $\mathrm{C}_{(4)}-\mathrm{H}$ bond contributing 0.20 D , and the π-electron distribution 0.35 D . Other calculations involve larger contributions from the π-electrons but are based on assumed values for the σ-bond moment. The second polar centre arises from the replacement of a hydrogen atom by the substituent X .

Interactions between these components of the resultant dipole moment being neglected, the contribution of the substituent relative to that of the $\mathrm{C}-\mathrm{H}$ bond it replaces,* ($\Delta \mu=$ $\mu_{\mathrm{C}-\mathrm{x}}-\mu_{\mathrm{C}-\mathrm{H}}$), may be calculated. The values for this increment in bond moment,

Table 1.

$100 w_{2}$	$\begin{gathered} v_{12} \\ \text { 2-Chloropyridine } \end{gathered}$		n_{12}
0.2362	1-14368	2-2963	1.49
0.3061	1-14345	$2 \cdot 3034$	$1-498$
0.6665	1-14231	$2 \cdot 3398$	$1-4980$
0.9174	1-14148	$2 \cdot 3654$	$1-4980$
1.3036	1-14023	$2 \cdot 4045$	$1-498$
1.4033	1-13989	$2 \cdot 4146$	$1-498$
$1 \cdot 6134$	1-13922	$2 \cdot 4359$	$1 \cdot 49$

$100 w_{2}$	v_{12}	ε_{12}	n_{12}
3-Chloropyridine			
$0 \cdot 0566$	1-14428	$2 \cdot 2748$	$1 \cdot 49795$
$0 \cdot 1292$	$1 \cdot 14403$	$2 \cdot 2776$	$1 \cdot 49797$
2796	1-14365	$2 \cdot 2839$	$1 \cdot 49799$
3041	$1 \cdot 14352$	$2 \cdot 2849$	$1 \cdot 49799$
. 5777	1-14261	$2 \cdot 2955$	$1 \cdot 49803$
1-2499	1-14049	$2 \cdot 3222$	$1 \cdot 49819$
$1 \cdot 7966$	$1 \cdot 13875$	$2 \cdot 3435$	$1 \cdot 49$

$v_{12}=1.14445\left(1-0.277 w_{2}\right)$
$\varepsilon_{12}=2.2726_{8}\left(1+1.73_{8}{ }_{8} w_{2}\right)$
$r_{12}=0.33541\left(1-0.241 w_{2}\right)$

3-Bromopyridine
$\begin{array}{llll}0.1010 & 1-14394 & 2 \cdot 2799 & 1.49783\end{array}$
$\begin{array}{llll}0.1977 & 1 \cdot 14340 & 2.2869 & 1.49785\end{array}$
$\begin{array}{lllll}0.3841 & 1.14239 & 2.2999 & 1.49790\end{array}$
$\begin{array}{lllll}0.8068 & 1-14010 & 2.3302 & 1.49802\end{array}$
$\begin{array}{llll}1.2089 & 1-13796 & 2.3591 & 1-49820\end{array}$
$\begin{array}{llll}1-6224 & 1-13553 & 2.3888 & 1.49826\end{array}$
$\begin{array}{llll}1.8178 & 1 & 13460 & 2.4029\end{array} \quad 1 \cdot 49829$

$\begin{array}{llll}0.1139 & 1-14389 & 2.2758 & 1.49804\end{array}$ $\begin{array}{llll}0 \cdot 1969 & 1-14342 & 2 \cdot 2783 & 1-49807\end{array}$ $\begin{array}{lllll}0.5676 & 1-14145 & 2.2888 & 1-49820\end{array}$ $\begin{array}{llll}1 \cdot 1187 & 1 \cdot 13852 & 2 \cdot 3046 & 1 \cdot 49838 \\ 1 \cdot 6077 & 1 \cdot 13594 & 2 \cdot 3186 & 1.49855\end{array}$ $\begin{array}{llll}1-8021 & 1-13515 & 2.3244 & 1-49862\end{array}$ $\begin{array}{lllll}1.9730 & 1.1340 \mathrm{I} & 2.3294 & 1.49868\end{array}$

$v_{12}=1.14445\left(1-0.471 w_{2}\right)$			
$\gamma_{12}=0.33538\left(1-0.423 w_{2}\right)$			
2-Cyanopyridine			
$0 \cdot 0359$	1-14439	$2 \cdot 2826$	$1 \cdot 49$
0.0555	1-14435	$2 \cdot 2885$	$1 \cdot 4979$
1634	1-14408	2-3194	$1 \cdot 49$
$\cdot 2875$	$1 \cdot 14383$	$2 \cdot 3550$	$1 \cdot 4980$
4652	$1 \cdot 14340$	$2 \cdot 4061$	$1 \cdot 498$
8332	1-14253	2.5117	1.4982
286	1-14191	$2 \cdot 5966$	49
$\begin{aligned} & v_{12}=1 \cdot 14445\left(1-0.196 w_{2}\right) \\ & \varepsilon_{12}=2 \cdot 2724_{3}\left(1+12.65 w_{2}\right) \\ & r_{12}=0.33543\left(1-0.141 w_{2}\right) \end{aligned}$			

2,6-Dichloropyridine
$\begin{array}{lllll}0.0537 & 1.14421 & 2.2777 & 1.49791\end{array}$
$\begin{array}{lllll}0.1027 & 1.14405 & 2.2827 & 1.49702\end{array}$
$\begin{array}{llll}0.1958 & 1.14369 & 2.2919 & 1.49795\end{array}$
$\begin{array}{llll}0.5135 & 1.14244 & 2.3229 & 1.49801 \\ 0.9373 & 1.14079 & 2.3645 & 1.49812\end{array}$
$\begin{array}{llll}0.9373 & 1 \cdot 14079 & 2 \cdot 3645 & 1 \cdot 49812 \\ 1 \cdot 3830 & 1 \cdot 13906 & 2.4084 & 1 \cdot 49822\end{array}$
$\begin{array}{llll}1 \cdot 4086 & 1 \cdot 13896 & 2 \cdot 4109 & 1 \cdot 49824\end{array}$

3,5-Dichloropyridine

0.0630	$1 \cdot 14421$	$2 \cdot 2729$	$1 \cdot 49800$
$0 \cdot 1478$	$1 \cdot 14389$	2.2736	$1 \cdot 49801$
0.3931	$1 \cdot 14293$	$2 \cdot 2753$	$1 \cdot 49807$
0.7121	$1 \cdot 14170$	$2 \cdot 2774$	$1 \cdot 49812$
0.9589	$1 \cdot 14076$	$2 \cdot 2792$	$1 \cdot 49821$
$1 \cdot 2502$	$1 \cdot 13961$	$2 \cdot 2813$	$1 \cdot 49830$
$1 \cdot 4764$	$1 \cdot 13875$	2.2828	$1 \cdot 49836$

$v_{12}=1.14445\left(1-0.337 w_{2}\right)$
$\varepsilon_{12}=2 \cdot 2725_{1}\left(1+0 \cdot 30_{0} w_{2}\right)$
$r_{12}=0.33544\left(1-0.305 w_{2}\right)$

w_{2}	$\begin{gathered} v_{12} \\ 4-\text { Chlo } \end{gathered}$	ε_{12} yridin	n_{12}
$0 \cdot 2000$	1-14404	$2 \cdot 2740$	$1 \cdot$
$0 \cdot 3607$	$1 \cdot 14331$	$2 \cdot 2753$	$1 \cdot 49804$
0.5751	1-14263	$2 \cdot 2765$	$1 \cdot 49808$
$0 \cdot 8604$	1-14174	$2 \cdot 2785$	$1 \cdot 49812$
$1 \cdot 1564$	1-14080	$2 \cdot 2807$	1.49820
1-6104	1-13936	2-2839	$1 \cdot 49824$
1.7328	1-13901	$2 \cdot 2850$	1.49831

$v_{12}=1.14445\left(1-0.275 w_{2}\right)$
$\varepsilon_{12}=2.2724_{3}\left(1+0.31_{5} w_{2}\right)$
$r_{12}=0.33543\left(1-0.240 w_{2}\right)$

4-Bromopyridine

$\begin{array}{llll}0 \cdot 1864 & 1-14342 & 2 \cdot 2738 & 1.49796\end{array}$ $\begin{array}{llll}0 \cdot 3020 & 1 \cdot 14283 & 2 \cdot 2746 & 1 \cdot 49797\end{array}$ $\begin{array}{lllll}0.5359 & 1-14153 & 2.2761 & 1.49802\end{array}$ $\begin{array}{llll}1-0691 & 1-13969 & 2.2796 & 1-49821\end{array}$ $\begin{array}{llll}1-4683 & 1-13627 & 2 \cdot 2823 & 1-49840\end{array}$ $\begin{array}{llll}1 \cdot 7376 & 1 \cdot 13507 & 2 \cdot 2840 & 1-49858\end{array}$ $\begin{array}{lllll}2 \cdot 1900 & 1 \cdot 13265 & 2 \cdot 2870 & 1 \cdot 49879\end{array}$
$v_{12}=1.14445\left(1-0.472 w_{2}\right)$
$\varepsilon_{12}=2 \cdot 2726_{5}\left(1+0 \cdot 28_{9} w_{2}\right)$
$r_{12}=0.33538\left(1-0.403 w_{2}\right)$

4-Cyanopyridine

$0 \cdot 0657$	1-14433	$2 \cdot 2745$	$1 \cdot 49793$
$0 \cdot 1712$	$1 \cdot 14408$	$2 \cdot 2775$	$1 \cdot 49795$
$0 \cdot 4374$	1-14344	$2 \cdot 2851$	$1 \cdot 49805$
$0 \cdot 7047$	1-14279	$2 \cdot 2929$	$1 \cdot 49817$
$1 \cdot 0927$	1-14188	$2 \cdot 3038$	$1 \cdot 49830$
1.5324	$1 \cdot 14081$	$2 \cdot 3165$	$1 \cdot 49847$
1.7124	$1 \cdot 14040$	$2 \cdot 3216$	$1 \cdot 49851$
$\begin{aligned} & v_{12}= \\ & \varepsilon_{12}= \\ & r_{12}= \end{aligned}$	$\begin{aligned} & 1.1444 \\ & 2 \cdot 2726 \\ & 0.3354 \end{aligned}$	$\begin{aligned} & 1-0 \\ & +1 \\ & 1-0 \end{aligned}$	$\begin{aligned} & \left.5 w_{2}\right) \\ & \left.{ }^{8} w_{2}\right) \\ & \left.15 w_{2}\right) \end{aligned}$

2,6-Dibromopyridine
$\begin{array}{llll}0.0751 & 1.14397 & 2.2759 & 1.49805\end{array}$ $\begin{array}{llll}0.1575 & 1.14341 & 2.2807 & 1.49811\end{array}$ $\begin{array}{llll}0.5674 & 1-14064 & 2 \cdot 3045 & 1.49832\end{array}$ $\begin{array}{llll}0.8710 & 1 \cdot 13858 & 2 \cdot 3224 & 1.49851\end{array}$ $\begin{array}{llll}1 \cdot 3860 & 1 \cdot 13502 & 2 \cdot 3528 & 1 \cdot 49877\end{array}$ $\begin{array}{llll}1 \cdot 5274 & 1 \cdot 13412 & 2 \cdot 3621 & 1 \cdot 49885\end{array}$ $\begin{array}{lllll}1.8010 & 1 \cdot 13225 & 2 \cdot 3775 & 1.49900\end{array}$
$v_{12}=1 \cdot 14445\left(1-0.591 w_{2}\right)$
$\varepsilon_{12}=2 \cdot 2723_{9}\left(1+2.58_{8} w_{2}\right)$
$r_{12}=0.33546\left(1-0.501 w_{2}\right)$
$v_{12}=1 \cdot 14445\left(1-0.341 w_{2}\right)$
$\varepsilon_{12}=2 \cdot 2725_{7}\left(1+4 \cdot 32_{1} w_{2}\right)$
$0.299 w_{2}$

* There is reason to believe ${ }^{1}$ that the $\mathrm{C}-\mathrm{H}$, and presumably the $\mathrm{C}-\mathrm{X}$, bond moments are somewhat reduced in the 2-position as a consequence of the smaller s character of the hybridised carbon orbital but this effect would be offset by the increased electronegativity of $\mathrm{C}_{(2)}$.
${ }^{2}$ Brown and Heffernan, Austral. J. Chem., 1957, 10, 493.

Table 1. (Continued.)											
$100 w_{2}$	v_{12}	ε_{12}		$100 w_{2}$	v_{12}	ε_{12}	n_{12}	$100 w_{2}$	v_{13}		
3,5-Dibromopyridine				3,4-Dibromopyridine				2,5-Dibromopyridine			
1001	1-14378	$2 \cdot 2730$	$1 \cdot 49789$	$0 \cdot 0892$	$1 \cdot 14385$	$2 \cdot 2733$	$1 \cdot 49790$	$0 \cdot 1258$	$1 \cdot 14365$	$2 \cdot 2756$	1.4979
1797	$1 \cdot 14322$	$2 \cdot 2735$	$1 \cdot 49794$	$0 \cdot 1576$	$1 \cdot 14339$	$2 \cdot 2740$	$1 \cdot 49793$	$0 \cdot 1772$	$1 \cdot 14334$	$2 \cdot 2770$. 497
5735	$1 \cdot 14061$	$2 \cdot 2758$	1.49809	$0 \cdot 4912$	1-14116	$2 \cdot 2761$	$1 \cdot 49809$	0.4729	$1 \cdot 14132$	$2 \cdot 2848$	- 49
1.0248	1-13762	$2 \cdot 2786$	$1 \cdot 49830$	0.8798	1-13855	$2 \cdot 2792$	$1 \cdot 49827$	0.9312	1-13828	2-2966	-49
$1 \cdot 6176$	1-13365	$2 \cdot 2822$	$1 \cdot 49854$	1.2534	1-13605	$2 \cdot 2820$	$1 \cdot 49846$	1.3023	1-13584	$2 \cdot 3063$	49
$1 \cdot 7994$	1-13302	$2 \cdot 2833$	$1 \cdot 49859$	1.6775	1-13320	$2 \cdot 2853$	$1 \cdot 49867$	1.6477	1-13345	$2 \cdot 3153$	- 4986
1.9044	$1 \cdot 13170$	$2 \cdot 2839$	$1 \cdot 49868$	1.8033	1-13236	$2 \cdot 2862$	$1 \cdot 49874$	1.8700	1-13198	2	
$\begin{aligned} & v_{12} \\ & \varepsilon_{12} \\ & v_{12} \end{aligned}$	$\begin{aligned} & 1 \cdot 1444 \\ & 2 \cdot 2723 \\ & 0 \cdot 3353 \end{aligned}$	$1-0$ +0 0	$\left.4 w_{2}\right)$ $\left.w_{2}\right)$ $\left.5 w_{2}\right)$	$\begin{aligned} & v_{12}=1 \cdot 14445\left(1-0.586 w_{2}\right) \\ & \varepsilon_{12}=2.2726_{0}\left(1+0.33_{1} w_{2}\right) \\ & r_{12}=0.33538\left(1-0.504 \varkappa_{2}\right) \end{aligned}$				$\begin{aligned} & v_{12}=1 \cdot 14445\left(1-0.579 w_{2}\right) \\ & \varepsilon_{12}=2 \cdot 2724_{0}\left(1+1 \cdot 14_{6} w_{2}\right) \\ & r_{12}=0.33539\left(1-0.507 w_{2}\right) \end{aligned}$			
2,4,6-Tribromopyridine				2,3,6-Tribromopyridine				3,4,5-Tribromopyridine			
1031	$1 \cdot 14375$	$2 \cdot 2747$	$1 \cdot 49793$	0922	$1 \cdot 14373$	$2 \cdot 2756$	$1 \cdot 49$		1-14372	$2 \cdot 2727$	-4979
2418	1-14269	$2 \cdot 2774$	$1 \cdot 49800$	3321	1-14198	$2 \cdot 2840$	-49814	0.2503	1-14264	$2 \cdot 2731$	-4979
6625	1-13967	$2 \cdot 2855$	1-49818	$0 \cdot 6998$	-13915	$2 \cdot 2969$	-49837	0.5228	$1 \cdot 14052$	$2 \cdot 2739$	-49815
7812	1-13878	$2 \cdot 2880$	$1 \cdot 49826$	0.9256	-13745	$2 \cdot 3049$	$1 \cdot 49850$	$0 \cdot 6961$	$1 \cdot 13915$	$2 \cdot 2744$	-49828
1440	1-13617	$2 \cdot 2949$	1.49842	$1 \cdot 2669$	1-13487	$2 \cdot 3168$	1.49870	1.0959	$1 \cdot 13616$	$2 \cdot 2756$	-49851
$1 \cdot 3664$	1-13456	$2 \cdot 2994$	1.49854	$1 \cdot$-5294	$1 \cdot 13282$	$2 \cdot 3260$	1.49892	1.3477	$1 \cdot 13429$	$2 \cdot 2763$.49863
1.5391	1-13285	$2 \cdot 3030$	49886	$1 \cdot 6274$	13209	$2 \cdot 3298$	$1 \cdot 49897$	1-6607	1-13192	$2 \cdot 2770$	49885
$\begin{aligned} & v_{12} \\ & \varepsilon_{12} \end{aligned}$	$\begin{aligned} & 1.4445(\\ & 2 \cdot 27266 \end{aligned}$	$\begin{aligned} & 1-0.64 \\ & (1+0.8 \end{aligned}$	$\left.\begin{array}{l}\left.1 w_{2}\right) \\ \left.\mathbf{2}_{2} w_{2}\right) \\ 54 w_{2}\end{array}\right)$	$\begin{aligned} & v_{12}=1 \cdot 14445\left(1-0.666 w_{2}\right) \\ & \varepsilon_{12}=2 \cdot 2723_{5}\left(1+1.54_{6} w_{2}\right) \\ & r_{12}=0.33542\left(1-0.556 w_{2}\right) \end{aligned}$				$\begin{aligned} & v_{12}=1.14445\left(1-0.659 w_{2}\right) \\ & \varepsilon_{12}=2.2724_{1}\left(1+0.12 w_{2} w_{2}\right) \\ & \gamma_{12}=0.33537\left(1-0.557 w_{2}\right) \end{aligned}$			
Chlorobenzene				Bromobenzene				Benzonitrile			
$0 \cdot 1892$	1-14399	$2 \cdot 2771$	1.49796	$0 \cdot 1893$	1-14357	$2 \cdot 2761$. 49794	0.0777	1-14432	$2 \cdot 2862$	-4979
$0 \cdot 2894$	$1 \cdot 14377$	$2 \cdot 2796$	$1 \cdot 49797$	$0 \cdot 3052$	$1 \cdot 14298$	$2 \cdot 2780$	1.49801	$0 \cdot 1737$	$1 \cdot 14420$	$2 \cdot 3027$	$1 \cdot 4979$
0.7158	1-14273	$2 \cdot 2902$	1.49806	$0 \cdot 6034$	$1 \cdot 14160$	$2 \cdot 2835$	-49809	0.4817	1-14371	$2 \cdot 3558$	$1 \cdot 49805$
$1 \cdot 0078$	1-14204	$2 \cdot 2976$	$1 \cdot 49813$	1.0208	1-13958	$2 \cdot 2910$	1.49826	0.7390	$1 \cdot 14331$	$2 \cdot 4000$	1.49812
1-4635	$1 \cdot 14093$	$2 \cdot 3088$	-49821	1.4788	1-13742	$2 \cdot 2991$	1.49842	1-2041	$1 \cdot 14256$	$2 \cdot 4804$	$1 \cdot 49824$
1.7340	1-14027	$2 \cdot 3155$	$1 \cdot 49828$	$1 \cdot 5643$	1-13702	$2 \cdot 3007$	$1 \cdot 49845$	$1 \cdot 6729$	$1 \cdot 14183$	$2 \cdot 5616$	$1 \cdot 49838$
1.8668	1-13993	$2 \cdot 3190$	1.49832	1.6176	1-13680	$2 \cdot 3018$	1.49846	1.7109	$1 \cdot 14175$	2.5682	1.49839
$\begin{aligned} & v_{12}=1.14445\left(1-0.211 w_{2}\right) \\ & \varepsilon_{12}=2.2723_{8}\left(1+1.09_{8} w_{2}\right) \\ & r_{12}=0.33541\left(1-0.174 w_{2}\right) \end{aligned}$				$\begin{aligned} & v_{12}=1 \cdot 14445\left(1-0.415 w_{2}\right) \\ & \varepsilon_{12}=2.2726_{2}\left(1+0.79_{1} w_{2}\right) \\ & r_{12}=0.33540\left(1-0.354 w_{2}\right) \end{aligned}$				$\begin{aligned} & v_{12}=1 \cdot 14445\left(1-0.137 w_{2}\right) \\ & \varepsilon_{12}=2.2726_{6}\left(1+7.59_{8} w_{2}\right) \\ & r_{12}=0.33542\left(1-0 \cdot 110 w_{2}\right) \end{aligned}$			

Table 2.

	$\infty P_{2}\left(\mathrm{~cm} .^{3}\right)$	$R_{\text {D }}\left(\mathrm{cm} .{ }^{3}\right)$	${ }_{0} P\left(\mathrm{~cm} .{ }^{3}\right)$	μ (D)	Previous values for $\mathrm{C}_{6} \mathrm{H}_{6}$ solutions
2-Chloropyridine	$244 \cdot 3$	28.27	216.0	$3 \cdot 25$	$3 \cdot 28{ }^{\text {a }}$
3-Chloropyridine	112.4	28.90	$83 \cdot 47$	$2 \cdot 02$	
4-Chloropyridine	$43 \cdot 33$	28.96	14.37	$0 \cdot 84$	$0 \cdot 84,{ }^{\text {b }} 0 \cdot 9$
2-Bromopyridine	$241 \cdot 4$	$30 \cdot 61$	$210 \cdot 8$	3.21	$2 \cdot 98{ }^{\text {d }}$
3-Bromopyridine	114.5	31-39	$83 \cdot 10$	$2 \cdot 02$	$1.93{ }^{\text {d }}$
4-Bromopyridine	47.97	31.67	$16 \cdot 30$	$0 \cdot 89$	
2-Cyanopyridine	$591 \cdot 4$	$30 \cdot 00$	$561 \cdot 4$	$5 \cdot 24$	
3-Cyanopyridine	$274 \cdot 6$	$29 \cdot 52$	$245 \cdot 1$	$3 \cdot 46$	
4-Cyanopyridine	$84 \cdot 20$	29.86	$54 \cdot 34$	$1 \cdot 63$	1.61
2,6-Dichloropyridine	$306 \cdot 6$	34.81	$271 \cdot 8$	$3 \cdot 65$	
3,5-Dichloropyridine	52.78	34.50	18.28	0.95	
2,6-Dibromopyridine	$295 \cdot 1$	39.68	$255 \cdot 4$	$3 \cdot 54$	$3 \cdot 43{ }^{\text {d }}$
3,5-Dibromopyridine	60.54	39.35	$21 \cdot 19$	1.02	$0 \cdot 98{ }^{\text {d }}$
3,4-Dibromopyridine	66.92	$39 \cdot 42$	27.50	$1 \cdot 16$	
2,5-Dibromopyridine	$150 \cdot 1$	$39 \cdot 22$	110.9	$2 \cdot 33$	
2,4,6-Tribromopyridine	154.8	47.30	$107 \cdot 5$	$2 \cdot 29$	$2 \cdot 05^{\text {d }}$
2,3,6-Tribromopyridine...	$244 \cdot 6$	47.01	197.6	$3 \cdot 11$	
3,4,5-Tribromopyridine	53.87	$46 \cdot 92$	6.95	$0 \cdot 58$	
Chlorobenzene	83.08	31-19	51.89	1-59	$1 \cdot 53-1 \cdot 64,{ }^{e} 1 \cdot 59,{ }^{\text {f }} 1 \cdot 58,{ }^{g} 1 \cdot 60$
Bromobenzene	$84 \cdot 38$	$34 \cdot 00$	$50 \cdot 38$	1.57	$1.48-1.58,{ }^{e} 1.56,{ }^{g} 1.55{ }^{h}$
Benzonitrile	365.2	$30 \cdot 78$	$334 \cdot 4$	$4 \cdot 05$	3.74-4.02, $\mathbf{4}^{\text {. } 05}{ }^{\text {i }}$

[^1]$\Delta \mu_{a}$ shown in Table 3, were evaluated on the assumption that the bond angles are as in pyridine.* In Table 4 the experimental dipole moments of some di- and tri-substituted pyridines are compared with the values $\left(\mu_{a}\right)$ computed from the dipole moment of pyridine and the appropriate $\Delta \mu_{a}$ values. In both Tables there is a close parallelism between the chloro- and bromo-derivatives, but the resultant moments cannot be explained completely by direct vector addition of bond moments.

Table 3.

Table: 4.

Compound	μ (D)	μ_{a} (D)	μ_{b} (D)	μ_{c} (D)
2,6-Dichloropyridine	3.65	$3 \cdot 80$	$3 \cdot 74$	3.72
3,5-Dichloropyridine	0.95	$0 \cdot 77$	0.94	0.95
2,6-Dibromopyridine	$3 \cdot 54$	3.74	$3 \cdot 66$	$3 \cdot 65$
3,5-Dibromopyridine	1.02	$0 \cdot 79$	1.02	1.03
3,4-Dibromopyridine	$1 \cdot 16$	1.36	1.15	$1 \cdot 11$
2,5-Dibromopyridine	$2 \cdot 33$	$2 \cdot 27$	$2 \cdot 35$	$2 \cdot 35$
2,4,6-Tribromopyridine	$2 \cdot 29$	$2 \cdot 39$	$2 \cdot 34$	$2 \cdot 34$
2,3,6-Tribromopyridine	$3 \cdot 11$	3.31	$3 \cdot 26$	3.22
3,4,5-Tribromopyridine	0.58 *	0.53	$0 \cdot 30$	$0 \cdot 10$

* Probably high, since only partial allowance is made for atom polarisation.

In each case the $\Delta \mu$ value is less than for the corresponding benzene derivative, as might be expected for electronegative substituents. Calculations show that, relative to benzene, the carbon atoms are positively charged as a consequence of the π-electron distribution. (According to one calculation ${ }^{3}$ the charges at the $\mathrm{C}_{(2)}, \mathrm{C}_{(3)}, \mathrm{C}_{(4)}$, and N atoms are $0.061,0.012,0.055$, and -0.202 , respectively.) The $\Delta \mu_{a}$ values, however, are not in the same order as these charges, and so other factors which influence the electron distribution in the molecule must be considered.

Induced moments resulting from a polarisation of part of the molecule by the electric field generated by the primary dipole moments and by the net charge on the nitrogen atom are complications. The substituent polarises the pyridine ring but, since its polarisabilities in the plane of the ring ${ }^{4}$ are 10.72×10^{-24} in the $\mathrm{C}_{(4)}-\mathrm{N}$ direction and $10.43 \times 10^{-24} \mathrm{~cm} .^{3}$ perpendicular to this, any induced moment would be virtually in the direction of the $\mathrm{C}-\mathrm{X}$ bond and incorporated in $\Delta \mu$. Moments will, however, also be induced in the substituent and their direction may not lie along the $\mathrm{C}-\mathrm{X}$ bond.

If only the moment, μ_{N}, resulting from hybridisation of the nitrogen atom and locating its centre at the nucleus of this atom, is considered, the dipole moment induced in a

* If the results are to be consistent, the dipole moment of 4 -cyanopyridine and of $3,4,5$-tribromopyridine must act in the opposite direction to that in pyridine.

[^2]substituent may be estimated approximately, following Littlejohn and Smith (cf. Hampson and Weissberger ${ }^{5}$), from the equations:
\[

$$
\begin{aligned}
& \mu_{x}=\mu_{N}\left[\left(\varepsilon_{a}+2\right) / \varepsilon_{b} r^{3}\right] \gamma_{x}\left(\cos ^{2} \theta-\frac{1}{3}\right) \\
& \mu_{y}=\mu_{N}\left[\left(\varepsilon_{a}+2\right) / \varepsilon_{b} \gamma^{3}\right] \gamma_{y} \cos \theta \sin \theta
\end{aligned}
$$
\]

μ_{x} and μ_{y} are the moments induced respectively parallel and perpendicular to the inducing moment $\mu_{\mathbb{N}}$, and γ_{x} and γ_{y} the corresponding polarisabilities of the polarisable group of dielectric constant ε_{a}, and distant r from $\mu_{N} ; \varepsilon_{b}$ is the dielectric constant of the medium between the two centres and θ the angle between the vectors μ_{N} and r. Unfortunately, it is difficult to assign numerical values to these quantities. The polarisation centres have been taken as at the nuclei of the halogen atoms ${ }^{6}\left(r_{\mathrm{C}-\mathrm{Cl}}=1.70 \AA, r_{\mathrm{C}-\mathrm{Br}}=1.85 \AA\right)^{7}$ and the middle of the $\mathrm{C}-\mathrm{N}$ bond $\left(r_{\mathrm{C}-\mathrm{CN}}=2.00 \AA\right) . \quad \varepsilon_{a} *$ is about $2 \cdot 2$, but ε_{b}, which has been assumed to be the dielectric constant of the compound corresponding to the portion of the molecule between the two centres, ${ }^{5}$ could have a value between the dielectric constants of benzene $(2 \cdot 3)$ and pyridine (12.3), ${ }^{8}$ and the effective value will vary somewhat with the position of the substituent. The value of μ_{N} is also uncertain. Analysis of the induced moments in picolines and lutidines ${ }^{9}$ indicates that $\mu_{\mathrm{N}} / \varepsilon_{b}$ is about $\frac{1}{4} \mathrm{D}$, and a slightly greater value ${ }^{\mathbf{1 0}}$ seems consistent with the dipole moments of phenyl-pyridines and -quinolines.

With the above assumptions, and Le Fèvre and Rao's ${ }^{11}$ data for polarisabilities, the moments induced in the substituent are listed in Table 3. It is obvious that the resultant moment induced in substituents in the 2- or 3 -position do not lie along the $\mathrm{C}-\mathrm{X}$ bond. Allowance being made for these induced moments, \dagger the corrected $\Delta \mu$ values in the $\mathrm{C}-\mathrm{X}$ bond direction are given under $\Delta \mu_{b}$ in Table 3. Although the absolute values are uncertain, the relative magnitude of the changes in $\Delta \mu$ is evident. It is most unlikely that $\Delta \mu$ is the same in the 2 -, 3 -, and 4 -positions.

Some evidence for these modified bond-moment increments is provided by examination of the dipole moments of the di- and tri-substituted pyridines. After allowance for the above polarisation, the dipole moments μ_{b} (Table 4) predicted for these molecules are in better agreement with experiment, though they are still somewhat high if the molecule has substituents in both the 2- and the 6-position. Even better agreement might be expected if the mutually induced moments in the halogen atoms are considered. To estimate their importance, the primary $\mathrm{C}-\mathrm{X}$ moments have been taken as $\Delta \mu_{b}$, operating from their polarisable centres, and ε_{b} as $4 \cdot 0$. The dipole moments (μ_{c}) calculated do not differ greatly from the μ_{b} values.

This apparent improvement has resulted from the assumption that the $\mathrm{C}-\mathrm{X}$ moment is not exactly in the bond direction. A moment induced by a net negative charge on the nitrogen atom would also produce this effect, which would be most marked with substituents in the 2 - and the 6 -position. The magnitude of the effect is difficult to estimate because of lack of trustworthy values of the effective net charge on the nitrogen atom and the dielectric constant of the medium (ε_{b}).

The Relative Order of the $\Delta \mu$ Values.-When allowance is made for the induced moments, the increment in bond moment would seem to be greater in the 2 - than in the 3 - and

[^3]4-positions with chloro- and bromo-pyridines, but somewhat less in the cyanopyridines. Some factors which can affect these " bond moments" are listed below.
(a) The positive charges on the carbon atoms, resulting both from the distribution of π-electrons and from the electronegative nitrogen atom attracting the σ-electrons, affect the availability of electrons to the substituent.
(b) The non-classical inductive effect discussed by Everard and Sutton. ${ }^{12}$ This is a mesomeric effect in the ring initiated by the polarity of the $\mathrm{C}-\mathrm{X} \sigma$-bond.
(c) The mesomeric effect arising from the tendency for π-bonding between the substituent and the carbon atom to which it is linked. In the halogenopyridines this would reduce both the positive charges on the carbon atoms and $\Delta \mu$. This would be less important with cyanopyridines since the mesomeric effect increases the existing positive charges. There is evidence from nuclear quadrupole resonance spectra ${ }^{13}$ that π-bond conjugation is particularly great in 2-chloropyridine, though the interpretation of the results is not unambiguous in view of long-range shielding. ${ }^{14}$ A Hückel-type molecularorbital calculation ${ }^{10}$ does indicate that the effect of conjugation in reducing the $\Delta \mu$ values in halogenopyridines is least in the 3 -position and somewhat less in the 2 - than in the 4-position.
(d) The bond angles might not be as in pyridine. (This might be more important in polysubstituted pyridines.) It could alter the moments of the ring, particularly that due to the lone-pair electrons on the nitrogen atom, and would also change the angle between the two primary moments. A 1° decrease in the angle between the $\mathrm{C}_{(4)}-\mathrm{N}$ and $\mathrm{C}-\mathrm{Cl}$ directions in the chloropyridines, for example, reduces the $\Delta \mu_{b}$ value in the 2 -position by 0.03 D and increases it in the 3 -position by 0.11 d .

The net effect of these factors is a reduction (by up to about 0.3 D) in the apparent $\mathrm{C}-\mathrm{X}$ bond moment in these pyridine compounds, compared with their benzene analogues; different bond moments in different positions round the pyridine ring; and a breakdown of strict vector additivity in the polysubstituted pyridines.

Of the various factors (c) appears the most likely to account for the difference between the order of the $\Delta \mu$ values in the halogeno- and cyano-pyridines.

Similar effects might be expected with other heterocyclic systems; this is being investigated.

The authors thank Professor Wibaut for his gift of some of the compounds studied, and the Imperial Chemical Industries Limited for a grant.

Woolwich Polytechnic, London, S.E.18.
[Received, March 17th, 1960.]
12 Everard and Sutton, J., 1951, 2821.
${ }^{13}$ Dewar and Lucken, J., 1959, 426.
${ }^{14}$ Cf. Elridge and Jackman, Proc. Chem. Soc., 1959, 89; Jackman, " Applications of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry," Pergamon Press, London, 1959.

[^0]: * Part XXIX, preceding paper.
 ${ }^{1}$ Cumper, Vogel, and Walker, J., 1956, 3621.

[^1]: ${ }^{a}$ Rogers and Campbell, J. Amer. Chem. Soc., 1953, 75, 1209. ${ }^{b}$ Leis and Curran, ibid., 1945, 67,
 $79 .{ }^{c}$ Hückel and Salinger, Ber., 1944, 77, 810. ${ }^{a}$ Goethals, Rec. Trav. chim., 1935, 54, 299. e Various measurements prior to 1947 from Wesson, " Tables of Electric Dipole Moments," Massachusetts Inst. Technol., 1948. f Le Fèvre, Trans. Faraday Soc., 1950, 46, 1. ${ }^{g}$ Littlejohn and Smith, J., 1953, 2456. ${ }^{h}$ Brown and de Vries, J. Amer. Chem. Soc., 1951, 73, 1811. i Everard, Kumar, and Sutton, J., 1951, 2807.

[^2]: ${ }^{3}$ Davies, Trans. Faraday Soc., 1955, 51, 449.
 ${ }^{4}$ Le Fèvre, Le Fèvre, Rao, and Smith, J., 1959. 1188.

[^3]: * Naturally, the appropriate value of ε_{a} will vary with the different substituents and might also differ in the x and y directions as the polarisability is anisotropic. Since it enters the formulæ for the induced moments as $\left(\varepsilon_{a}+2\right)$, a slight error in ε_{a} will not seriously affect the values computed for these small induced moments.
 \dagger These induced moments vary from 0.00 to about $0 \cdot 10 \mathrm{D}$. Those caused by the less polar centres in pyridine would be correspondingly smaller and are neglected.
 ${ }^{5}$ Littlejohn and Smith, J., 1953, 2458; Hampson and Weissberger, J., 1936, 396.
 ${ }^{6}$ Smith and Littlejohn, J., 1954, 2552.
 7 "Tables of Interatomic Distances and Configurations in Molecules and Ions," Chem. Soc. Special Publication, No. 11, 1958.
 ${ }^{8}$ Partington, "An Advanced Treatise on Physical Chemistry," Vol. V, Longmans, Green \& Co., London, 1954.
 ${ }^{9}$ Cumper, Chem. and Ind., 1958, 1628.
 ${ }^{10}$ Unpublished results.
 ${ }^{11}$ Le Fèvre and Rao, $J ., 1958,1465$.

